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ABSTRACT:   
 

Mutation testing is a fault-based program analysis technique to assess and improve the quality of a test 

suite. However, it suffers from two main issues. First, there is a high computational cost in executing the 

test suite against a potentially large pool of generated mutants. Second, there is much effort involved in 

filtering out equivalent mutants, which are syntactically different but semantically identical to the original 

program. Despite three decades of  research on this technique, prior work has mainly focused on detecting 

equivalent mutants after the mutation generation phase, which is computationally expensive with limited 

efficiency and its usage in large systems is still rare. In this paper, we propose a novel two-stage mutation 

testing framework for bug-proneness as a criterion  to measure the effectiveness of test suite. This 

framework offers a method to tackle the complexity of large programs by reducing the number of mutants 

used. We present our experimentation using mutation analysis on Linux Kernel’s regression test suites 

generation on RCU (Read Copy Update) module, where we adapt existing techniques to constrain the 

complexity and computation requirements. We show that mutation analysis can be a useful tool, uncovering 

gaps in even well-tested modules like RCU. This experiment has so far led to the identification of 2 gaps in 

the RCU test harness, and 2 bugs in the RCU module masked by those gaps. We argue that mutation testing 

can and should be more extensively used in practice. 

  

Keywords: Software Testing, Mutation Testing,  Linux Kernel, Regression Testing. 
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[1] Introduction 

Software testing is an indispensable, error prone, tedious and most expensive part of the 

software development life cycle. Moreover, unprecedented increased of software usage 

in our daily lives reinforced the need for quality testing. Furthermore, the exponential 

growth of software system and the demand for reusable software components, automating 

the software testing processes is highly desirable.   Unfortunately, the inherent complexity 

of modern software makes the adequacy of evaluating quality  difficult.  Failure to meet 

quality requirements can  lead to tremendous cost, especially when these lead to software 

failures [1]. It is not impossible for a test case to account for all possible scenarios that 

can arise during the execution of a program. Thus, defect free software is an illusion and 

almost all programs contain defects that lead to more or less severe failures. Nevertheless, 

after the initial development, like any software engineering artifact, source code requires 

quality assessment and maintenance.  The essence of software testing is discover hidden 

faults in the System Under Test (SUT)  but unfortunately,  the inadequacy of existing 

techniques in dealing with fault detection capability necessitated this research. To this 

end, one is interested in a program analysis technique for test suits generation and test 

coverage.  

Mutation testing is a fault-based and program analysis testing technique which provides 

a testing criterion that can be used to measure the effectiveness of a test suit in terms of 

the ability to detect faults [2]. According to a recent work by Djam et al. [3], a comparative 

analysis of Prime-Path Coverage (PPC), Edge-Pair Coverage (EPC) and Edge Coverage 

(EC) based on mutation analysis criterion was conduction. The experimental results show 

that mutation analysis criterion is effective fault detection. 

Despite the extensive used of mutation analysis in literature, there are some painful 

drawback inherent with mutation analysis for large and complex problems.  Mutation 

analysis is rarely used in the industry because of the large numbers of mutants generated 

for huge and complex real-world projects, which must be analysed,  thus computational 
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cost is highly increased. Another reason is the lack of proof of mutation analysis to 

effectively handle equivalent mutants and human oracle problems.  

Exhaustive mutation analysis generates large numbers of mutants, but mutant sampling 

[3] and mutant execution optimizations [4,5]  can help to mitigate the problem. Offutt et 

al. [6] categorized these efforts into do fewer, do faster, and do smarter approaches. 

Unlike model checking, mutation analysis doesn’t require any kind of modeling of the 

environment and associated data structures, which makes it more easily applicable to 

complex systems. Mutation analysis has been widely adopted by academia than industry 

and the technique is mostly using relatively simple program.  

Though testing is effective in ensuring software quality, as software systems get more 

complex, the task of exhaustive testing becomes more complex and even infeasible in 

some cases. In order to build less error prone systems, we, therefore, need to not only 

focus on quickly and efficiently identifying bugs through testing and verification of 

software, but also on identifying factors associated with bugs that could be used in fault 

prediction techniques to potentially help us focus quality-assurance efforts on the most 

defect-prone parts of the code. The quality of software artifacts is one of the key concerns 

for software practitioners and is typically measured through effective testing. While it is 

widely held that “you cannot test quality into a product,” you can use testing to detect 

that the Software Under Test (SUT) has a fault, and to estimate its likely overall quality. 

Moreover, while testing itself does not produce quality, it leads to the discovery of faults. 

When these faults are corrected, software quality improves. 

 

Automated testing is now a mainstream not only to software industry but equally to the 

research community. The Linux Kernel is one of today’s most complex and fast evolving 

software that maintaining quality assessment is pretty difficult but must not be avoided. 

Applying techniques such as program analysis and model checking on a well tested 

software artifacts like kernel and its modules  to uncover gaps is a daunting task  due to 
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the size and complexity of the source code. Although mutation analysis can be applied on  

Linux Kernel, it is not trivial to do so.  As this research area matures, it is essential to 

conduct mutation analysis on complex programs in order to provide many benefits to the 

broader community of researchers and practitioners. This paper describes our experience 

using mutation testing on the Linux-kernel’s RCU to perform regression testing.  

The main contributions of this article are three-fold: 

1. We introduced a novel two-stage mutation testing framework for bug-proneness as a 

criterion  to measure the effectiveness of test suite. This framework offers a method to 

tackle the complexity of large programs by reducing the number of mutants used. 

2.  Empirical evaluation of effectiveness of test suite quality measurements such as 

statement coverage and mutation score and identifying mutation score as a better criterion 

between the two. 

3. Investigating the applicability of mutation analysis in real-world complex software 

system adapting existing techniques and showing its effectiveness. 

The remainder of study is organized as follows: Section 2 discusses background and 

related work. Section 3 describes our research method, including the overall  process. 

Section 4 presents the results of applying mutation analysis on a complex and well-tested 

software and hence discusses the potential threats to validity of our study. Finally, Section 

5 concludes this study and states the future work directions.  
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[2] Background  

The view of mutation analysis as a process of seeding faults  into a SUT is established 

firmly in the literature [6,8]. Mutation testing has long been used to compare test sets and 

criteria by using mutants as proxies for faults [8,9].  

 

[2.1] Mutation Analysis 

The idea of mutation analysis was first proposed by Lipton [10]. Mutation analysis seeks 

to evaluate test suites by embedding known defects into the SUT. These defects are called 

mutants, and are produced by simple syntactic rules, e.g., changing a relational operator 

from “>” to “>=”. These rules are called mutation operators. The term mutagen is 

synonymous with both mutation-operator and mutation transformer in literature. If only 

one single mutation separates the mutant from the original program, it is called a first 

order mutant (FOM). A higher order mutant (HOM) is separated from the original by 

multiple mutations. 

[2.2]  Read-Copy Update in the Linux Kernel 

The Read-Copy Update (RCU) is a scalable, high performance Linux-kernel 

synchronization mechanism that runs low-overhead readers concurrently with updaters 

[11,12]. Producing quality RCU implementations are decidedly non-trivial and their 

stringent validation is mandatory. Over the past 25 years, many technologies have been 

added to the Linux kernel, one example being Read-Copy Update (RCU) [13]. Because 

RCU is used on large clusters and has been extensively tested, most remaining bugs are 

likely to be in difficult-to-reach parts of the code. RCU is used in read-mostly situations. 

Readers run concurrently with updaters, so RCU maintains multiple versions of objects 

and ensures they are not freed until all pre-existing readers complete, after a grace period 

elapses. The idea is to split updates into removal and reclamation phases [14]. The 

removal phase makes objects inaccessible to readers, waits during the grace period, and 
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then reclaims them. Grace periods need wait only for readers whose run time overlaps the 

removal phase. Readers starting after the removal phase ends cannot hold references to 

any removed objects and thus cannot be disrupted by objects being freed during the 

reclamation phase. Modern CPUs guarantee that writes to single aligned pointers are 

atomic, so readers see either the old or new version of a data structure. This enables 

atomic insertions, deletions, and replacements in a linked structure. Readers can then 

avoid expensive atomic operations, memory barriers, and cache misses. In the most 

aggressive configurations of Linux-kernel RCU, readers use the same sequence of 

instructions that would be used in a single-threaded implementation, providing RCU 

readers with excellent performance and scalability [15]. 

 

The bulk of RCU is in 4 files (srcu.c, tiny.c, update.c and tree.c). Together, these only 

total to 5,542 lines of code (LOC), with the largest being 3,771 LOC. The RCU is 

therefore not the largest program examined using mutation analysis (Apache Commons 

Math, with 202,000 lines of code, was analyzed by Gopinath et al. [16]), but it has the 

highest complexity, as Apache commons is a large but shallow set of library calls. RCU’s 

primary test system, rcutorture, is an automated stress-testing mechanism composed of 

1,800 lines of code. rcutorture can simulate 12 different RCU scheduling variations and 

test on 16 hardware configurations. These configurations are specified using parameters 

such as CONFIG_NR_CPUS, CONFIG_HOTPLUG_CPU, CONFIG_SMP, etc. 

rcutorture uses Qemu to load kernels built using these parameters and monitors their 

performance for a user specified period. The test periodically outputs status messages via 

printk(), which can be examined via the dmesg command. Qemu uses KVM, essentially 

running a virtualizer (Qemu) on top of another virtual machine, a practice referred to as 
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nested virtualization [17]. Interest in rcutorture has grown, with the number of emerging 

contributions growing  between 2010 and 2020 

  

[3]  Mutation Analysis as an Automated Program Analysis Technique for Linux 

Kernel Test Suites Generation 

Our proposed mutation testing framework consists of the following two stages: 

(1) Mutation-based Test Code Engineering  

(2) RCU test code Engineering 

  

[3.1]  Mutation-Based Test Code Engineering 

Our mutation-based test code engineering consist of designing program mutation 

operators and mutation testing metric for Linux Kernel that assist in investigating the 

applicability of mutation analysis in real-world complex software system 

 

[3.1.1]  Program Mutation Operators 

 

The ability of mutation analysis to detect faults is based on the mutation operator used. 

In order to generate mutant for the subjects programs,   

 

Table 3.1: Mutation operators 
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Operators Name  Description 

rep_int_const Replace any integer constant C by 0, 1, -1, (C+1) or (C-1) 

rep_op Replace an arithmetic, relational, logical, bitwise logical, 

increment/decrement, or arithmetic-assignment operator by another 

operator from the same class 

Neg_op Negate the decision in an “if”,  “while” statement or any control 

structure 

del_stmt  Delete a statement 

Omit_meth_call Omit method call Suppress a call to a method. If the method has a 

return value, a default value is used instead. 

 

The first three operator classes were extracted and modified from Offutt et al.'s research 

[24] on identifying a set of "sufficient" mutation operators, i.e., a set S of operators such 

that test suites that kill mutants formed by S tend to kill mutants formed by a very broad 

class of operators. They were adapted so that they would work on  C programs rather than 

the Fortran of the original research. The fourth and firth operators, was added to handle 
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pointer-manipulation and field-assignment statements that would not be vulnerable to any 

of the sufficient mutation operators. 

Table 3.2 contains some sample mutants from RCU and Table 3.3 contains the details of 

mutants for each mutation operator category. 

Table 3.3: Mutation operators 

Operators Name  Mutant Versions   

Tree.c Tiny.c Update.c Srcu.c Total mutants 

rep_int_const 882 234 56 34 1206 

rep_op 545 35 45 56 681 

Neg_op 434 456 145 45 1080 

del_stmt  623 124 45 245 1037 

Omit_meth_call 335 345 34 123 837 

Total mutants 2891 1194 325 503 4841 

[3.1.2]  Mutation Testing Metric for Linux Kernel  

Suppose we have a given program P under analysis, mutation testing applies a set of 

mutation operators to generate a set of mutants M for P. Each mutation operator applies  

transformation rules  such as: negating a conditional statement from if (x>0) to if (x<=0)) 

to generate mutants; replacing an integer by certain criteria, replacing an arithmetic 

operator by another operator in the same class, deleting a program statement, or omitting 

method calls. Each mutant m ∈ M is the same as the original P except the mutated program 

statement. Then, all the mutants in M are executed against the test suite T of P to evaluate 
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its effectiveness – for each mutant m, when the execution of t ∈ T on m has different result 

from the execution of t on P, m is killed by t; otherwise, m survives. In this way, mutation 

testing results can be represented as a mutation matrix (Table 3.3).   

[3.2]   RCU Test Code Engineering 

After applying the mutation generator to each of RCU’s files in Table 3.3 (less than 10 

minutes for all files), the next step was to compile the 4,841 resulting mutated versions 

of RCU. For scalability reasons, load and stress testing were conducted on four virtual 

machines running in parallel built on the ESXi 5.6 platform [20]. After compilation, we 

had to test each of the mutants. Running this testing serially would take excessive 

amounts of time. The kernel cannot run as a thread, so we could not use threads to 

parallelize the testing. The logical step was therefore to use four virtual machines in 

parallel.  

 

The next step was to run the mutated RCU’s to determine if rcutorture would flag them. 

Because execution and detection of faults is probabilistic, we allocated relatively short 

timeouts (2 minutes). We hypothesized that most faults would be trivially detected, while 

a handful of faults require very long runtimes. Our goal was to narrow the set as quickly 

as possible to then allocate more time and resources to the hard mutants. Each virtual 

machine was assigned to handle one specific mutant. rcutorture uses Qemu to load 

different versions of the kernel, built using permutations of a set of parameters On each 

virtual machine, 14 parallel processes were set up to compile 14 different kernel images 

using these parameters. This helped us to cut the setup time down by 1/14. Next, a single 

sequential process would load the images on Qemu and monitor the thread for 2 minutes. 

We used a single process because all Qemu processes were killed after 2 minutes, which 



INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING AND APPLICATIONS 

VOLUME XVIII, ISSUE V, May 2024, WWW.IJCEA.COM, ISSN 2321-3469 

Xaveria Youh Djam and  Nachamada Vachaku Blamah 

19 

 

would kill all instances of Qemu. If we had run 14 Qemu instances in parallel, all would 

be killed when the first finished.  

[4]  RESULTS AND DISCUSSION  

We now discuss our experiments, which were performed on a 64-bit machine running on 

Linux Mint 20.2 with Intel Corei7, 3.07 GHz processing speed with 16 GB of memory. 

The source code of our RCU model and the experimental data are available at 

https://github.com/testing/verify-mutantrcu/releases/tag/ date23-camera-ready.  

[4.1]  RESULTING PATCHES TO RCU  

In this section we list the patches that resulted from our application of mutation analysis 

on RCU along with a brief description. we consider patches whose commits are explicitly 

linked to a bug report from the Linux Kernel Bugzilla tracking system. All patches were 

constructed via rcutorture process P, hereafter referred to as P-Patches.  

P-Patch 1: Test both RCU-sched and RCU-bh for Tiny RCU Tiny RCU provides both 

RCU-sched and RCU-bh configurations, but only RCU-sched was tested by the rcutorture 

previously. This gap was identified via mutation analysis on tiny.c. This commit changed 

the TINY02 configuration to test RCU-bh, with TINY01 continuing to test RCU-sched.  

 

P-Patch 2: Correctly handle non-empty Tiny RCU callback list with none ready This fixes 

an RCU bug. This bug is most likely to occur if there is a new callback between the time 

rcu_sched_qs() or rcu_bh_qs() is called before __rcu_process_callbacks() is invoked. 

This bug was detected by the addition of RCU-bh to rcutorture.  

P-Patch 3: Test SRCU cleanup code path: An rcutorture memory leak of the dynamically 

allocated >per_cpu_ref per-CPU variables was identified via our mutation analysis. This 

commit adds a second form of srcu (called srcud) that dynamically allocates and frees the 

associated per-CPU variables. This commit also adds a cleanup() member to 

rcu_torture_ops that is invoked at the end of the test, after - >cb_barriers(). After the 
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patch, the SRCU-P torture-test configuration selects scrud instead of srcu, with SRCU-N 

continuing to use srcu,  thereby testing both static and dynamic srcu_struct structure. 

 

[4.2]  DISCUSSION 

Sequel to the above process, we were able to narrow 4,348 mutants to only 527 potentially 

interesting mutants with little or no human intervention. While 527 may seem like a large 

number, it is very likely that this could be further reduced by giving rcutorture more run-

time to try to kill these mutants. We look at our process as a kind of mutation analysis 

pre-processing, where we, as quickly as possible, with maximum automation, narrow the 

field of mutants to the set of interesting mutants.  

 

Given the complexity of RCU, one could expect to see most mutants fail during 

compilation. However, only 13% of generated mutants failed to build. Most of these 

failing mutants came as a result of mutating function or other parameters in a way that 

causes a conflict, which the compiler will catch. This is an indication that the mutation 

framework is doing a reasonably good job of only creating plausible mutants rather than 

randomly changing tokens in the code. For a simpler application, we would expect to see 

an even lower failure rate 

 

We found that about 8% of our mutants were equivalent mutants, which is close to the 

findings of Kintis et al. [18]. When we look at unique mutants in each file we see that 
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tree.c has the highest percent of unique mutants (82%). This is the biggest file, with 101 

functions. tree.c implements a large part of RCU’s synchronization.  

 

[4.3]  THREADS TO VALIDITY  

 

We focus on a subset of Linux Kernel and we used the tool by Andrews et al. [19] to 

generate mutants. Using different mutation operators or tools could lead to different 

results. Our study looked at a program written in C, so additional studies on large projects 

in other programming languages would be needed to verify the same benefits there.  

 

[5]  CONCLUSION AND FUTURE WORK  

The biggest challenge in the software development industry is to deliver an application 

with 100% defects free. This paper describes the applicability of mutation analysis in a 

real-world complex and well test software system  as Linux Kernel. We found that 

mutation analysis can uncover interesting instances of weak testing, even in a robust 

system like rcutorture.  This work shows that RCU is a rich example to drive research: it 

is small enough to provide models that can just barely be verified by existing tools, but it 

also has enough concurrency and complexity to drive advances in techniques and tooling. 

While a fairly large number of mutants were left alive after our initial run, subsequent 

runs should further reduce the surviving mutants.  

In order to further improve on our work, we plan to implement new mutation operators 

in order to make a comparative evaluation with data coverage techniques and symbolic 

execution. In addition, because rcutorture and kernel testing is a non-deterministic 

process, it is likely the case that a set of short runs is more efficient for killing mutants 
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than longer runs. We will investigate this in our future work by integrating search-based 

optimization techniques such as genetic algorithm and hill climbing.  

Acknowledgments  

We thank the anonymous  reviewers for the valuable comments. This work is supported 

in part by AFRICOM Project Grant No. AFR21122.  

References  

 

[1]   Jia, Y. and Harman, M. (2011). An analysis and survey of the development of mutation testing, 

  TSE, vol. 37, no. 5, pp. 649–678. 

[2]  Ammann, P. and Offutt,J. (2016).  Introduction to software testing. Cambridge University  

  Press. 

[3]  Djam, X.Y., Blamah, N.V. and  Ezema , M.E(2021). A Comparative Evaluation of Test   

  Coverage Techniques Effectiveness. Journal of Software Engineering and Applications, 14,  

  vol. 14, No. 6, 95-109.  

[4]  Adamopoulos, K. Harman, M. and Hierons. R.M. (2004) How to Overcome the Equivalent  

  Mutant Problem and Achieve Tailored Selective Mutation using Co-Evolution. In Proceedings 

  of the 2004 Conference on Genetic and Evolutionary Computation (GECCO ’04), volume. 

[5]  Zhang, L., Hou, S. S., Hu, J. J., Xie, T., & Mei, H. (2010). “Is operator-based mutant selection 

  superior to random mutant selection?”. In Software Engineering, 2010 ACM/IEEE 32nd   

 International Conference on (Vol. 1, pp. 435-444). IEEE. 

 

[6]  Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H., & Zapf, C. (1996). “An experimental   

 determination of sufficient mutant operators”. In Transactions on Software Engineering and  

 Methodology, Vol. 5, No. 2, (pp. 99-118). 

[7]   B. Kurtz, P. Ammann, M.E. Delamaro, J. Offutt, L. Deng, Mutant subsumption graphs, in:  

  Tenth IEEE Workshop on Mutation Analysis, Mutation 2014.  

[8]   Just, R. and Schweiggert, F, (2015). Higher accuracy and lower run time: efficient mutation  

 analysis using non-redundant mutation operators, Softw. Test. Verif. Reliab. Vol. 25, 490–507. 

[9]  Namin, A.S., Andrews, J.H. and Murdoch, D.J. (2008). Sufficient mutation operators for   

 measuring test effectiveness. In Proceedings of the 30th International Conference on Software  

 Engineering, ICSE ’08, pages 351–360.  

[10]  Lipton, R. (1971). “Fault diagnosis of computer programs”. Student Report, Carnegie Mellon  

 University.  

[11]  McKenney, P. E. (2013). “Structured deferral: synchronization via procrastination”. In   

  Communications of the ACM, Vol. 56, No. 7, (pp. 40-49).  



INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING AND APPLICATIONS 

VOLUME XVIII, ISSUE V, May 2024, WWW.IJCEA.COM, ISSN 2321-3469 

Xaveria Youh Djam and  Nachamada Vachaku Blamah 

23 

 

[12]  Guniguntala, D., McKenney, P. E., Triplett, J., & Walpole, J. (2008). “The read-copy-update  

 mechanism for supporting real-time applications on shared-memory multiprocessor systems  
 with Linux”. IBM Systems Journal, Vol. 47, No. 2, (pp. 221-236).  

 

[13]  P. E. McKenney and J. D. Slingwine, “Read-copy update: Using execution history to solve   

 concurrency problems,” in PDCS, 1998. 

[14]  P. E. McKenney and J. Walpole, “Introducing technology into the Linux kernel: a case study,”  

 ACM OSR, vol. 42, no. 5, 2008. 

[15]  J. Tassarotti, D. Dreyer, and V. Vafeiadis, “Verifying read-copy-update in a logic for weak   

 memory,” in PLDI, 2015. 

[16]  Gopinath, R., MA Alipour, Ahmed, I., Jensen, C., & Groce, A. (2016). “On The Limits of   

 Mutation Reduction Strategies”. In Proceedings of the 38th International Conference on   

 Software Engineering, (pp-511-522). ACM. 

[17]  McKenney, P. E., Eggemann, D., & Randhawa, R. (2013). “Improving energy efficiency on  

 asymmetric multiprocessing systems”. 

 

[18]  Kintis, M., Papadakis, M., & Malevris, N. (2010). “Evaluating mutation testing alternatives: A  

 collateral experiment”. In Software Engineering Conference (APSEC), 2010 17th Asia Pacific,  

 (pp. 300-309). IEEE. 

 

[19]  Andrews, J.H., Briand, L.C. and Labiche. Y. (2005). Is mutation an appropriate tool for testing  

 experiments? In Proceedings of the 27th International Conference on Software Engineering,   

  ICSE ’05, pages 402–411.  

 

[20]  ESXI: http://searchvmware.techtarget.com/definition/VMware-ESXi 

 

 

 

 

http://searchvmware.techtarget.com/definition/VMware-ESXi

